
Designing Scripts to Guide Users in Modifying Knowledge-based
Systems

Marcelo Tallis and Yolanda Gil
Information Sciences Institute

University of Southern California
Marina del Rey, CA 90292

tallis@isi.edu, gil@isi.edu

In Proceedings of the Sixteenth National Conference on Arti�cial Intelligence (AAAI-99),
July 1999, Orlando, Florida

Abstract

Knowledge Acquisition (KA) Scripts capture typ-
ical modi�cation sequences that users follow when
they modify knowledge bases. KA tools can use
these Scripts to guide users in making these mod-
i�cations, ensuring that they follow all the rami-
�cations of the change until it is completed. This
paper describes our approach to design, develop,
and organize a library of KA Scripts. We report
the results of three di�erent analysis to develop
this library, including a detailed study of actual
modi�cation scenarios in two knowledge bases.
In addition to identifying a good number of KA
Scripts, we found a set of useful attributes to de-
scribe and organize the KA Scripts. These at-
tributes allow us to analyze the size of the library
and generate new KA Scripts in a systematic way.
We have implemented a portion of this library and
conducted two di�erent studies to evaluate it. The
result of this evaluation showed a 15 to 52 per-
cent time savings in modifying knowledge bases
and that the library included relevant and useful
KA Scripts to assist users in realistic settings.

Introduction
Developing Knowledge Acquisition (KA) tools that help
users create and maintain knowledge bases (KBs) is
an important research issue for AI. Once a prototype
knowledge base is initially developed, users would like
to maintain and extend it throughout its lifetime. Users
need KA tools to guide them make these changes, be-
cause it is hard for them to foresee and follow up
on all the e�ects and implications of each individual
modi�cation that they make. Script-based KA tools
(Gil & Tallis 1997) help users follow typical modi-
�cation procedures (KA Scripts), ensuring that they
follow up the e�ects of each individual change and
complete the overall modi�cation. This kind of ap-
proach has also been shown to be useful for develop-
ing software (Waters 1985; Johnson & Feather 1991;
Johnson, Feather, & Harris 1992), and for developing
intelligent assistants for common tasks (e.g., the wiz-
ards that are now a part of many commercial tools).

1Copyright c
1999, American Association for Arti�cial
Intelligence (www.aaai.org). All rights reserved.

Previous work has showed promising results with a
scripts-based tool that contained a limited set of KA
Scripts (Gil & Tallis 1997). We set out to scale up
this approach and develop a library of KA Scripts that
would provide a more extensive coverage of situations
when users modify knowledge bases. We found that
there are many ways to de�ne these Scripts, that it
is hard to �nd the appropriate level of generality, and
that it is challenging to generate KA Scripts system-
atically to ensure good coverage. This paper reports
our �ndings in all these areas. The paper also describes
three di�erent analyses that we conducted, each un-
veiling di�erent insights about how to populate a KA
Script library.
First, we carried out an analysis of the follow-up pro-

cedures for every possible syntactic modi�cation to the
elements of a knowledge-based systems (KBSs). The
result was a set of KA scripts that has proven to be
complete in its coverage but too general to provide use-
ful guidance to users.
Second, we carried out a detailed analysis of KBS

modi�cation scenarios. The results obtained from this
analysis were the reverse of those from the prior anal-
ysis, which was not satisfactory either. Using this
method we obtained KA Scripts that proved to be very
useful to users. Unfortunately, this method cannot pro-
duce a complete set of KA Scripts. There are few other
reports in the literature of what kinds of modi�cations
are made to knowledge bases, and they are often anec-
dotal. We report the results of this analysis in de-
tail, so other researchers can bene�t from this empirical
perspective on what are typical knowledge acquisition
tasks.
Finally, we combined both analyses to conceive a

method that turned to be satisfactory in both, cover-
age as well as user support. The problem with our �rst
analysis was that an indication of a syntactic change to
a KBS element was too general to determine an opera-
tive procedure for following up that change. We needed
a more speci�c description of the change as well as of
the situation in which that change was performed and
the strategy chosen to follow up that change. These
more speci�c descriptions could be generated by com-
bining all possible values for a set of de�ning attributes

of a KA Script. A set of attributes was determined by
analyzing KBS modi�cation scenarios.
We used this set of attributes to generate systemati-

cally a subset of the KA Scripts library, which we im-
plemented. Our preliminary tests with subjects show
a 15 to 52 percent improvement in terms of time to
complete a modi�cation. We also conducted an exper-
iment in a realistic setting, using �ve modi�cation sce-
narios to a knowledge base that were proposed by a
third party. Our Script-Based KA tool found relevant
scripts to guide the user in most situations.
The rest of the paper is organized as follows. First we

introduce some background on script-based knowledge
acquisition and our framework for representing knowl-
edge. Following that, we discuss some important con-
siderations for developing a KA script library. Then we
describe each one of the analyses that we have carried
out and report on their results. Finally we describe
our implementation of a SBKA tool and present some
results from its evaluation.

Background: Script-based Knowledge
Acquisition

The script-based knowledge acquisition (SBKA) ap-
proach (Gil & Tallis 1997) was conceived to support
users in completing a KBS modi�cation. KBS modi�-
cations usually require changing several related parts of
a system. Identifying all of the related portions of the
system that need to be changed and determining how
to change them is hard for users to �gure out. Further-
more, if the modi�cation is not completed, the KBS will
be left inconsistent.
To assist users in performing all of the required

changes, a KA tool needs to understand how changes in
di�erent parts of the system are related. In script-based
knowledge-acquisition this is achieved by incorporating
a library of knowledge-acquisition scripts, which repre-
sent prototypical procedures for modifying knowledge-
based systems. KA scripts provide a context for re-
lating individual changes of di�erent parts of a KBS,
and hence enabling the analysis of each change from
the perspective of the overall modi�cation.
Figure 1 shows an example of a typical procedure

for modifying a KBS. In our knowledge representa-
tion framework which is EXPECT (Gil & Melz 1996;
Swartout & Gil 1995; Gil 1994), a knowledge-based
system includes a model of the domain and problem-
solving methods for achieving goals in that domain.
The domain model describes concepts, relations, and
their instances. A problem solving method (or method
for short) consist of a capability description that indi-
cates the goals that the method is able to achieve, and
a body that describes a procedure for achieving those
goals. The body procedure can include subgoal expres-
sions that have to be solved by other methods whose
capability subsumes the posted subgoal. The method's
body can also include relational expressions that make
reference to other elements of the domain.

MOVEMENT
VEHICLE

SHIP
AIRCRAFT

lift
M1:
capability: estimate (RTT, MOVEMENT ?m)
body: begin
 ….

 end

M2:

capability: compute (RTT, SHIP ?s)
body: begin
 ….
 find (SAIL-DISTANCE,...)
 end

M2’:

capability: compute (RTT, AIRCRAFT ?a)
body: begin
 ….
 find (FLY-DISTANCE, ...),
 end

posted goal became generalized
from: compute (..., SHIP)
to : compute (..., VEHICLE)

copy method that achieved
goal before

compute (…, SHIP)

adapt copy to the other
subtypes of the goal

compute (…, AIRCRAFT)

1

2 3

compute (RTT, m? -> LIFT)

Figure 1: A typical KBS modi�cation procedure

The domain model of Figure 1 describes two kind
of VEHICLES: SHIPS and AIRCRAFT, and TRANSPORTATION

MOVEMENTSwith LIFTS consisting of SHIPS (crossed over).
The �gure also shows two problem-solving methods.
Method M1 for estimating the round-trip time (RTT)
of a movement posts a subgoal for computing the RTT
of the lift of the movement. Because the lift of a move-
ment consist of ships, this goal could be achieved by
method M2 which computes the RTT of ships.

Suppose now that the LIFT relation is changed to in-
clude any kind of vehicle in its range. This change will
cause the goal COMPUTE, posted by M1, to compute the
RTT for both ships and aircraft. At this state, the KBS
contains an error because the system will not be able
to achieve the goal compute RTT of vehicle with any
available problem-solving method. Hence, additional
changes are needed to complete the modi�cation and
leave the KBS in a coherent state.

The example also describes a typical procedure for
following up these kinds of changes. The procedure
indicates that:

if 1) a) a posted goal is made more general (e.g., the goal compute

the round trip time of a ship is changed to compute the

round trip time of a vehicle) and
b) the generalized goal can now be decomposed into two dis-

junct subcases (e.g, the goalcompute the round trip time

of a vehicle can be decomposed into one case for ship
and another case for aircraft), and

c) one of these subcases is equivalent to the goal before being
generalized

then 2) copy the method that achieved the goal before being
changed (this method can still achieve one of the sub-
cases), and

3) adapt this copy to the other subcase (e.g., copy the
method for ships and adapt it to aircraft). This way,
the two methods combined would achieve the modi�ed
goal.

The following sections discuss the methods used to
develop a library of KA scripts.

Developing a Library of Knowledge
Acquisition Scripts

A KA scripts library is the core of a script-based
knowledge-acquisition (SBKA) tool. To maximize its
utility, this library should not merely be a repository of
isolated KA scripts. Rather, this library should com-
bine KA Scripts such that as a whole it covers most
possible situations with minimumoverlap. This section
discusses some important considerations for a KA script
library.

Which Procedures

One important aspect is what kind of procedures would
be represented. It is useful to distinguish the following
types of procedures:

1. Macros. Procedures for automating common se-
quences of changes in a knowledge-based system. The
purpose of these procedures is to simplify and speed-
up modi�cations to a KBS. An example of a proce-
dure of this type might be a macro for splitting a
problem-solving method. This would be useful, for
example, when a method is too complex or when one
wants to reuse a portion of it. This procedure substi-
tutes a fragment of the original method by an invo-
cation to a new method, and creates a new method
that corresponds to the substituted code.

2. Methods for �xing errors. Procedures that implement
common remedies to known errors types in the KB.
The purpose of these procedures is to assist a naive
user in �xing the error. An example might be a pro-
cedure that, to remedy the absence of a method for
achieving a goal, adapts another method to that pur-
pose. This procedure would guide a user in choosing
and adapting an existing method to solve the un-
achieved goal.

3. Procedures for following up changes. Procedures for
propagating the changes performed to one KB ele-
ment into other related elements in the KB. The pur-
pose of these procedures is to help a user to deal with
the complexity of the interactions among elements of
a KBS. An example of a procedure of this type might
be a procedure that modi�es a goal statement to con-
form to a change of the capability of the method that
achieves it.

These categories are not mutually exclusive. Some
KB modi�cation procedures may belong to more than
one of these classes. For example, a macro can be used
to �x an error, and this �x might consist in following
up a previous change. We decided to focus on the pro-
cedures for following up changes because they are more
directly related to the issue of assisting users in per-
forming all required changes of a KBS modi�cation.

What changes

Changes can be described at di�erent levels, from a
purely syntactical level (e.g., change a goal argument
from X to Y) to a knowledge level (e.g., modify a

problem-solving method so instead of considering trips
exclusively with ships, it now considers aircraft too).
While a low-level description would make it easier to

describe and formulate changes, it fails to capture the
intention behind each change, and KA Scripts for fol-
lowing them up end up being so general that they are
typically not very useful. For example, consider a KA
Script that propagates a change in a goal argument to
the method that is supposed to achieve that goal. This
KA script cannot provide too much guidance in modi-
fying that method because this modi�cation would be
very di�erent depending on the speci�cs of the change
in the goal (e.g., whether the goal was made more gen-
eral or more speci�c). Another drawback of using low
level descriptions is that descriptions at this level might
constitute only a small fraction of the change that has
to be followed up. For example, a goal expression might
have changed several parameters, and it would be bet-
ter to follow this whole change at once and not each
change to a parameter in isolation.
Therefore, we believe it is more useful to describe

changes at a more conceptual level. However, we
have found di�culty in systematically enumerating
changes at this higher level, while enumerating syntac-
tic changes is a relatively easy task.
We have found that the procedures for following

changes are more dependent on the e�ect of the changes
than on the change itself. First, because changes to
KB elements have di�erent e�ects depending on how
these elements interact with each other. For example,
a change to generalize the range of a relation will have
di�erent e�ects whether the elements in this range were
used as arguments of a goal or as a domain for a rela-
tional expression. In the case of the goal, this change
will cause a generalization of the goal. In the case of
the relational expression, this change will cause a gen-
eralization of the domain of the relational expression.
Depending on the case, this change should have to be
followed up di�erently. In the goal case, the contin-
uation might change the method that used to achieve
that goal, while in the case of the relational expression
the continuation might change the de�nition of the rela-
tion. Another reason to follow e�ects instead of changes
is that di�erent changes may produce the same e�ect
and this e�ect is followed up independently of its cause
(i.e., the original change). Therefore, our KA scripts
were designed to follow up possible e�ects of changes
rather than the performed changes. The following sec-
tions describe the analyses that we carried out in order
to develop a KA script library.

Analysis of Syntactic Changes
Our �rst analysis looked at the kinds of syntactic
changes that can be done to a knowledge-based system,
their possible consequences, and the successive changes
that could follow up on those consequences. For exam-
ple, we analyzed di�erent types of changes to goals (e.g.,
modify one parameter), their possible consequences (it
might not be possible to match that goal to a method),

and their follow-up changes (e.g., change that same pa-
rameter in the method that achieved that goal before,
and then change the body of that method accordingly).
The set of all possible changes was generated from the
grammar of the language used to describe the knowl-
edge bases.
The result of this analysis was a complete set of KA

scripts for following up all possible changes. These KA
Scripts cover all the situations in which a user can get
when modifying a knowledge base. However, tests with
our initial implementation showed that the guidance
they provide to users was too general to be very use-
ful. The main problem was that they do not make good
use of the context available, like more speci�c charac-
teristics of the change (e.g., the parameter was changed
to a more general type), existing knowledge (e.g., the
modi�ed goal can be decomposed into two subcases), or
the changes performed to other parts of the knowledge
base (e.g., a similar change was performed to a related
element).
Another problem of this approach was that it

produced somewhat cumbersome and redundant KA
scripts. As we explained in the previous section,
changes to KBS elements have di�erent e�ects depend-
ing on how these elements interact with each other, and
we have found that the procedures for following changes
are more dependent on the e�ect of the changes than on
the change itself. Especially because di�erent changes
can produce the same e�ect and this e�ect is followed up
independently of its cause. By structuring KA Scripts
around the type of change to be followed up, each KA
script had to include provisions for every possible con-
sequence that the change to be followed up can have.
However, because these consequences are independent
of the change itself, these same provisions have to be
repeated in every related KA script.
Nevertheless, this analysis allowed us to follow a sys-

tematic procedure for enumerating KA Scripts and gen-
erate a complete set.

Analysis of KBS modi�cation scenarios
This analysis was aimed to generate KA Scripts that
were less general (and thus more helpful) than those
generated in our previous analysis. Our hypothesis was
that a detailed analysis of KBS modi�cation scenarios
would allow us to identify patterns of related changes
more speci�c to the context in which those changes were
performed. For this analysis, we compared a number of
subsequent versions of KBSs that were saved by users
as they were developing them. Another possibility for
doing this analysis is to record the changes while users
are editing the KB. The problem with that approach is
that the analysis would include changes that are later
undone by users, or partially undone and then com-
pleted in a way that has more of an error recovery
avor
and where it would be best if the user went back to the
original KBS and started the change again. We gener-
ated our data by comparing di�erent versions of KBSs
and reconstructed the changes done across versions.

Before:

(FIND-SPLIT-ROUTE
 (obj (?p is (spec-of PASSABLE)))
 (for (?o is (inst-of MILITARY-ORGANIZATION)))
 (from (?f is (inst-of LOCATION)))
 (to (?t is (inst-of LOCATION))))

After:

(FIND (obj (?p is (spec-of PASSABLE-SPLIT-ROUTE)))
 (for (?o is (inst-of MILITARY-UNIT)))
 (from (?f is (inst-of LOCATION)))
 (to (?t is (inst-of LOCATION))))

(1)

(2)

(1)

(2)

Figure 2: Two independent clusters of related changes
between two versions of a method capability descrip-
tion. Cluster 1) corresponds to a rephrasing of a ca-
pability to enhance readability, while cluster 2) corre-
sponds to a specialization of a capability (military-unit
is a subtype of military-organization)

To reconstruct the changes performed between ver-
sions A and B of the same KBS and to identify KA
scripts, we followed the following procedure:

1. Correlating KB versions: Build the trees of
method invocation for A and B and correlate their
nodes. The correlation between nodes helps in recog-
nizing methods that have changed their names or ca-
pability descriptions between versions, and also new
methods that are similar to others that existed be-
fore.

2. Comparing versions: For each method in the KB,
�nd the di�erences between the two versions of the
KBS.

3. Identifying conceptual changes: Not all changes
performed in a method share their purpose. For
each method in the KB, hypothesize the purpose of
each observed change and then cluster the changes
with related purposes. Figure 2 shows an example of
clusters. Each cluster would constitute a conceptual
change.

4. Relating conceptual changes: Find sets of related
conceptual changes. One way to accomplish this is by
hypothesizing what changes should have been neces-
sary to follow up an observed conceptual change and
then trying to locate them. Use the tree of method
invocation to �nd out relations among methods.

5. Generalizing sequences of conceptual changes:
Generalize the observed sequences of changes and de-
termine the features from the scenario that would
make these sequences possible and meaningful.

6. Proposing other sequences: Propose other se-
quences of changes by permuting the order of the
changes in the sequence.

We carried out this analysis based on the following
input data:

� Case Study I: 4 successive versions of a tra�cability
KBS where the user was developing an initial proto-
type.

� Case Study II: 6 successive versions of an air cam-
paign plan evaluation KBS where the user was ex-
tending an already implemented prototype.

Case study I: Initial prototype
implementation

In this scenario we identi�ed 41 conceptual changes.
The following is a list of the di�erent conceptual
changes observed and the number of times that they
occurred.

1. rephrase method capability. The capability of a
method has been rephrased by renaming, adding or
deleting constant terms, usually to enhance readabil-
ity. However, the method's procedure remains the
same. (13 occurrences)

2. rephrase goal. Like the previous conceptual change
but with goals (13 occurrences)

3. restrict applicability of a method. A method
capability is specialized but the method's procedure
is not changed. (9 occurrences)

4. add exception. A fragment of the method's proce-
dure is embedded inside the then (or else) clause of
an If statement. (1 occurrence)

5. restrict result type. Specialize result type decla-
ration. (1 occurrence)

6. pass an additional argument in a method in-
vocation. (1 occurrence)

7. require an additional parameter in a method
capability. (1 occurrence)

8. split a method. Extract a fragment from a method
into a newly created method. (1 occurrence)

9. reorganize access path to domain elements.
Reorganize the sequence of domain relations used to
retrieve domain elements from the KB (probably be-
cause the domain model has been reorganized too).
(1 occurrence)

The following relations between conceptual changes
were observed:

1. rephrase goal / rephrase capability of invoked method

2. rephrase capability / rephrase internal goals that re-
fer to the changed capability parameters

3. restrict applicability of a method / restrict result type
of method

4. restrict applicability of a method / restrict applica-
bility of the methods invoked by internal goals that
refer to the specialized parameter (i.e., propagates
capability restrictions to other methods)

5. rename concept in domain model / rename concept
reference in methods

6. reorganize domain model / reorganize access path to
domain elements

7. rephrase goal / rephrase similar goals in same method

8. change body expression / replicate change in similar
expressions in same method

9. pass an additional argument in a method invocation
/ require an additional parameter in a method capa-
bility

Case study II: Extending implemented
prototype

In this scenario we identi�ed 25 conceptual changes.
The following is a list of the kinds of conceptual changes
observed and the number of times that they occurred.

1. rename a relational expression. Rename a re-
lational expression because the referred relation was
also renamed in the domain model. (1 occurrence)

2. add goal to a set of goals. The analyzed KBS
used to generate a set of goals corresponding to a set
of instances. After adding an instance to the set, a
new goal was automatically generated and added to
the initial set of goals. (1 occurrence)

3. create a method to achieve a new goal added
to a set. (1 occurrence)

4. create method to achieve a new goal added to
a method procedure. (3 occurrences)

5. reduce the number of elements from a set to
be processed. Filter the elements of a set before
processing them. (1 occurrence)

6. remove an append operand. (1 occurrence)

7. remove an unused method. (3 occurrences).

8. collapse two methods into one. (2 occurrences)

9. remove unused goal argument. (2 occurrences).

10. remove unused capability argument. (2 occur-
rences).

11. rephrase goal. (2 occurrences)

12. rephrase capability. (2 occurrences)

13. split a method. (2 occurrences).

14. regroup operations performed by a set of
methods into a di�erent set of methods. The
operations performed by a chain of methods invoca-
tions is regrouped into a di�erent set of methods to
enhance method reusability. (2 occurrences)

The following relations between conceptual changes
were observed:

1. rename relation in domain model / rename relational
expression

2. add goal to the set of goals / create a method to
achieve a new goal added to a set

3. add goal expression to method procedure / create
method to achieve new goal added to a method

4. remove goal expression from method procedure / re-
move unused method

5. remove unused goal argument / remove unused capa-
bility argument

6. regroup operations from a chain of methods invoca-
tions into a di�erent set of methods / repeat the same
changes for a parallel branch of method invocations.

7. rephrase goal / rephrase capability of invoked method

This scenario analysis permitted us to recognize a
number of additional interesting characteristics of KBS
modi�cations and KA scripts:

� Conceptual changes: Conceptual changes describe
changes at a level that captures the user's intention
behind the changes. For example, generalizing the
type of a goal parameter conceptually correspond to
generalizing a goal. Note that a conceptual change
has several realizations. For example, another way of
generalizing a goal is by generalizing its verb or by
eliminating a goal parameter.

Referring to changes at a conceptual level has the
following advantages:

{ Enhance user comprehension of the KA script pro-
cedure because it is closer to the level in which
users reason about changes.

{ Develop a KA Scripts library at an appropriate
level of abstraction.

{ Factorize KA Scripts because referring to a concep-
tual change is equivalent to referring to all possible
realizations of it.

{ Design a KA Script library that is not so speci�c to
any particular knowledge-representation language
because most conceptual changes have correspond-
ing changes in other KB frameworks.

Referring to changes at a conceptual level has the
problem that it is more di�cult to systematically enu-
merate all possible types of changes.

� Interdependencies between KBS elements:
The observed sequences of changes allowed us to in-
fer Interdependencies between elements of a KBS. For
example, from two related conceptual changes, one in
a method capability and the other in a method sub-
goal that shared the type of one of their parameters,
we inferred a possible interdependency between ele-
ments of this kind. Determining the possible types of
interdependencies between elements of a KBS would
help us to identify new KA Scripts by analyzing how
the interdependent elements should be modi�ed in
coordination. It was not possible to establish the
necessary conditions for all observed interdependen-
cies between KBS elements. Hence, some identi�ed
KA Scripts were based on the hypothetical existence
of such interactions.

� Recurrent KA scripts: Several detected KA
Scripts were observed repeatedly in di�erent parts
and in di�erent KBSs. Whether the generation of

KA scripts based on speci�c scenarios would produce
KA scripts general enough to be reused was an is-
sue that had concerned us before carrying out this
analysis.

Although the analysis of KBS modi�cation scenarios
allowed us to identify KA Scripts that were more spe-
ci�c to their context, it did not help in generating a
comprehensive library of KA scripts. Nevertheless, this
analysis permitted us to identify important attributes
of the KA Scripts that constitute the base for the third
and last analysis.

Analysis of Attributes of Knowledge

Acquisition Scripts
In this analysis we extended the method used in the
�rst analysis to a full set of attributes. Starting from
this set of attributes together with an enumeration of
their range values, we can develop a comprehensive KA
script library by de�ning a KA script for any feasible
combination of attribute values. The attributes that we
considered were as follows:

1. Change to follow up: We designed a typology of
conceptual changes based on.

(a) changed element. A KB element (or a subelement)
that describes a conceptual unit (e.g., goal expres-
sion, method capability).

(b) type of change. Whether the change created, mod-
i�ed, copied, or deleted an element.

(c) transformation. The relationship between the
changed element before and after the change (e.g.,
generalization, addition of an argument).

2. Interdependency: We listed all possible KB ele-
ments that could be interdependent with the changed
element referred in 1 (e.g., goal / method for achiev-
ing it). A KA Script procedure would be concerned
with propagating the change performed in 1 to the
KB element indicated by this attribute.

3. Strategy: This dimension enumerates some general
strategies for propagating the change indicated in 1
along the interdependency indicated in 2. For exam-
ple, a strategy for propagating the addition of a new
posted goal to the method that will achieve it is to
generalize an existing problem-solving method that
achieves a goal similar to the one recently added, so
that it is applicable to both goals. We have included
several strategies that either modify existing KB el-
ements or create new KB elements based on an ex-
isting one to make it easier for users to perform the
modi�cation and to encourage knowledge reuse. The
indication of which existing element should be used
as a basis is the purpose of the next attribute.

4. Base element: This attribute enumerates good can-
didates to be used as a basis for strategies that modify
an existing element or create a new one based on an
existing one (e.g., the method that used to achieve
a changed goal before starting the modi�cation, a

method used for achieving a similar goal posted in
an analogous method)

Using a set of KA script attributes to generate a KA
Script library o�ered us some additional bene�ts. It
allowed us to describe the content of the library by in-
dicating the range of attribute values covered by the
KA scripts in the library. It also permitted us to esti-
mate the size of the whole library before completing its
development.

An implemented KA Script Library

We have implemented a KA script library to be
used with ETM (Gil & Tallis 1997), a script-based
knowledge-acquisition tool that supports modi�cations
of EXPECT knowledge-based systems (Gil & Melz
1996; Swartout & Gil 1995; Gil 1994). The following
are the regions of the KA script library that we have
implemented:

1. KA Scripts to follow any type of change to a goal
expressions, that take care of its interdependency
with the problem-solving method that achieves
that goal. We considered all the strategies that con-
sisted in creating or modifyingproblem-solvingmeth-
ods. Other possible strategies, not considered in
our current implementation, include modifying the
changed goal expression further to match an existing
problem-solving methods in its current state.

2. KA Scripts to follow changes to a method capa-
bility, that take care of its interdependency with
goal expressions to be solved by it. We considered
all types of changes to method capabilities, and all
strategies that consisted in creating or changing goal
expressions. Other possible strategies, not considered
in our current implementation, include creating or
modifying further the same or other problem-solving
methods to match the existing goal expressions.

These two regions of the KA Scripts space were cho-
sen because they address the interdependencies between
goal and method capability, which are in our experience
one of the most prevalent and harder to solve prob-
lems that arise during knowledge-based system modi�-
cations. These two regions contain up to 100 KA Scripts
altogether, from which we have implemented 37.
We were able to identify a few general operators that

could be used to implement steps of the KA scripts
(e.g., generalize a method, create analogous method to
achieve similar goal). These operators could be reused
to implement most of the steps in our KA Scripts
library. For example, the operator to Generalize a
method was used by a KA Script that in order to achieve
a new goal generalizes the problem-solving method that
achieves an existing goal similar to the one just added,
and was also used by a KA script that, in order to
achieve a goal that was generalized, generalizes the
method that used to achieve that goal before being
modi�ed.

KA scripts at work
We have carried out two di�erent studies to evaluate
our KA scripts library. In the �rst one we conducted a
series of controlled experiments to measure the compar-
ative performance of subjects in modifying KBSs with
and without ETM. In our second study we conducted
an empirical analysis of subjects using ETM in real-
istic domains and scenarios previously unseen by the
developers of ETM.

Controlled Experiments

These experiments compared the performance in mod-
ifying KBSs for subjects using ETM vs. subjects using
EXPECT only. Each subject had to solve two scenarios,
one of them using EXPECT and the other using ETM.
One of the scenarios was slightly more complex than
the other one. All of our subjects were familiar with
EXPECT (but not with ETM), and had some previous
exposure to the domain.
We conducted this experiment twice. The �rst time

we only had implemented a subset of the KA script
library (7 KA scripts). To put subjects in a context
in which the KA scripts in the library were applicable,
we indicated the �rst change that had to be performed
for each scenario. Four subjects participated this �rst
time. The results obtained showed that the time needed
to complete the scenarios could be reduced 15% for the
simpler scenario and 52% for the more complex one (Gil
& Tallis 1997). Notice that the subjects were familiar
with EXPECT but not with ETM. We expect the dif-
ference to be much larger in our future tests with users
who are not familiar with EXPECT.
We have repeated the experiment with a more com-

plete set of KA scripts (37 KA scripts) and with no
restrictions for the initial changes to the scenarios. In
this occasion the time needed to complete the scenario
was reduced between a 15% and a 52%. Besides, the ex-
periment was important in that it showed that scaling
up the KA scripts library did not degrade the perfor-
mance of the subjects. An issue that had also concerned
us.

Realistic and Unseen Scenarios

For this study we used the knowledge-bases and sce-
narios of the Challenge Problems from the High Per-
formance Knowledge Bases (HPKB) DARPA project
(Cohen et al. 1998). These problems were developed
independently and with the speci�c purpose of testing
the technologies being developed within the project. In
particular, both, the domain and the modi�cation sce-
narios were unknown to the designers of the KA script
library before this experiment. The modi�cation sce-
narios consisted in performing �ve extensions to a large
KBS concerned with evaluating enemy workarounds for
a targeted obstacle and containing 62 problem-solving
methods. Each extension required creating and modi-
fying several problem-solving methods.
In this experiment, a subject used ETM to imple-

ment the KBS extensions requested by the scenarios.

Our subject was one of the developers of the KBS who
had also performed these same modi�cations months
before the experiment without ETM. During this exper-
iment, the subject was allowed to consult the KBS that
has resulted from that previous episode, and to copy
and paste fragments of that KBS in order to speed-up
typing. However, we asked the subject to follow the
guidance of ETM if appropriate.
We expected that our library would cover all the sit-

uations in which methods should be created or mod-
i�ed to follow up additions or modi�cations of goals.
Therefore, the following analysis concentrates on those
situations.
The complete modi�cation of the KBS required the

creation and modi�cation of 16 methods. From this
total, 14 were achieved with the guidance of ETM
through the application of 12 KA Scripts. Most of these
method modi�cations (12) were new methods added to
the KBS, which our KA scripts helped to achieve by
creating and then modifying copies of existing methods.
It is interesting to note that when the subject wrongly
thought that the modi�cation was complete, ETM de-
tected the need to perform additional changes. These
changes were omitted the �rst time that the subject
had made these modi�cations. KA scripts are useful
not only to make changes faster but also as checklists
to ensure that the changes are completed well.

Related Work
Some knowledge-based software engineering (KBSE)
tools have incorporated a concept similar to our KA
Scripts. KBEmacs (Waters 1985) is a knowledge-
based program editor that permits the construction of
a program by combining algorithmic fragments (called
cliches) from a library. KBEmacs cliches are equiv-
alent to KA Scripts except that cliches are algorith-
mic fragments that are used to generate programs while
our KA Scripts are procedures that are used to modify
knowledge-based systems. The developers of KBEmacs
have concentrated on the design of cliches and on the
overall architecture to handle them, but did not directly
addressed the issue of developing a library of cliches.
The Knowledge-based Software Assistant (KBSA)

and its successor ARIES are other related KBSE tools
(Johnson & Feather 1991; Johnson, Feather, & Harris
1992). The purpose of these tools is to provide inte-
grated support for requirements analysis and speci�-
cations development. They provide a library of evo-
lution transformations that a user can apply to make
consistency-preserving modi�cations to the description
of a software system. These evolution transformations
are similar in spirit to our KA Scripts. Their main dis-
tinction lies in that evolution transformations are used
to manipulate a semi-formal description of a system,
while our KA scripts modi�ed the actual implemen-
tation of a system. In developing a library of evolu-
tion transformations, the authors of these systems have
followed a similar analysis to those performed by our-
selves, including a detailed analysis of one scenario and

an analysis of the di�erent semantic dimensions em-
bodied in software speci�cations. Like our KA scripts
attributes, their dimensions are also independent of the
notation used to describe speci�cations and hence can
be applied to others systems too.

Conclusions
KA Scripts are a useful mechanism to guide users in
modifying knowledge bases. This paper presents a num-
ber of useful insights for developing libraries of KA
Scripts that are based on di�erent kinds of analysis of
modi�cation scenarios. One of the results reported is a
characterization of the modi�cations made to two real
knowledge bases. We also describe a set of attributes
that we found very useful to characterize and to sys-
tematically generate a KA Scripts library. Our initial
evaluations show that our library contains KA Scripts
that can be applied to most situations in real modi�-
cation tasks, and that subjects spend 15 to 52 percent
less time modifying knowledge bases.

Acknowledgments
We would like to thank Jose Luis Ambite, Kevin
Knight, and the past and present members of the EX-
PECT research group. We gratefully acknowledge the
support of DARPA with contract DABT63-95-C-0059
as part of the DARPA/Rome Laboratory Planning Ini-
tiative and with grant F30602-97-1-0195 as part of the
DARPA High Performance Knowledge Bases Program.

References
Cohen, P.; Schrag, R.; Jones, E.; Pease, A.; Lin, A.;
Starr, B.; Gunning, D.; and Burke, M. 1998. The Darpa
High-Performance Knowledge Bases Project. AI Magazine
19(4).

Gil, Y., and Melz, E. 1996. Explicit Representations of
Problem-solving Strategies to Support Knowledge Acquisi-
tion. In Proceedings of the Thirteenth National Conference
on Arti�cial Intelligence.

Gil, Y., and Tallis, M. 1997. A Script-based Approach to
Modifying Knowledge-based Systems. In Proceedings of the
Fourteenth National Conference on Arti�cial Intelligence.

Gil, Y. 1994. Knowledge Re�nement in a Re
ective Archi-
tecture. In Proceedings of the Twelfth National Conference
on Arti�cial Intelligence.

Johnson, W. L., and Feather, M. S. 1991. Using Evolution
Transformations to Construct Speci�cations. In Automat-

ing Software Design. AAAI Press. 65{92.

Johnson, W. L.; Feather, M. S.; and Harris, D. R.
1992. Representation and Presentation of Requirements
Knowledge. IEEE Transactions on Software Engineering
18(10):853{869.

Swartout, B., and Gil, Y. 1995. EXPECT: Explicit
Representations for Flexible Acquisition. In Proceedings

of the Ninth Knowledge-Acquisition for Knowledge-Based
Systems Workshop.

Waters, R. 1985. The Programmer`s Apprentice: A session
with Kbemacs. IEEE Transactions on Software Engineer-
ing 11(11):1296{1320.

